
Reduced van der Waals equation of state and 
critical properties, of rubbers 

Th. Vilgis and H.-G. Kilian 
Universitdt U/m, Abtei/ung Experimentel/e Physik, Oberer Ese/sberg, D-7900 U/m/Donau, West 
Germany 
(Received 17 June 1982," revised 17 September 1982) 

A reduced equation of state describing the deformation mode as simple elongation is derived for van der Waals 
networks, thus manifesting general relationships for molecular networks also embracing their stability 
characteristics and the occurrence of a phase transition. 
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I N T R O D U C T I O N  

The systems we are dealing with are molecular networks 
with crosslinked chains of finite lengths. They are indeed 
localized in physical space, nevertherless representing 
"quasi-particles' in conformational space which may be 
considered as 'conformons'  with weak interactions ~'2 
The idea of considering such networks in their global 
properties as a van der Waals conformational gas 1,3 raises 
questions as to whether there might exist a reduced 
representation of the equation of state in analogy to the 
well known formulation for real gases 4. 

THE VAN DER WAALS E Q U A T I O N  OF STATE 
AND ITS CRITICAL DATA 

In the mode of isothermal isobaric simple elongation a 
"van der Waals'  network has been shown to have the 
equation of state ~'~9" 

with 

.1 r - 
f ' = N k  =D D,~,-D aD2 

D = 2 - ) .  2 2=1/1o 

(1) 

(2) 

where I is the independent strain variable related to 1 o, the 
length in the unstrained state. According to equation (2) 
D~ is written correspondingly: 

Dm= 2m - 2~-~ 2 Zm = lm~/l o (3) 

The maximum strain 2m should be related to the number 
of statistical segments in the chains, n~. for a Gaussian 
chain s.(' expressed by: 

~2 
Zm = n~, (4) 

In equation (1) T is the absolute temperature and the 
parameter a is the second van der Waals coefficient which 
takes into consideration global interactions which are 
cooperative in nature. 

For all rubbers that have been studied up to now, the 
van der Waals equation of state describes the elastic 
properties quite well within the total range of 
elongations 7'8. But we note immediately that this 

equation of state does not everywhere satisfy the criteria 
of intrinsic stability ~. For one of these criteria is that: 

(Sf'/82)T>O (5) 

and this condition is clearly violated for systems with 
appropriate values of (2 .... a) over a definite range of 
strains. This is shown for a typical isotherm in Figure 1. A 
phase transition consequently must occur in this system. 

We shall consider a rubber in the state A ofFiqure 1 and 
in contact with a temperature and pressure reservoir. The 
force of the reservoir is quasistatically increased and leads 
to a corresponding quasistatic increase in the force of the 
system. The temperature is maintained strictly constant. 
The system proceeds along the isotherm in Figure 1 from 
the point A in the direction of B. Under equilibrium 
conditions (leaving out the problems of phase nucleation) 
a new phase with the intrinsic strain )/' should appear at B 
coexisting with the original system elongated only to 2'. 
The total length of the system thus suffers a discontinuous 
change at the force of the phase transition. 

The general characteristics of stability of such systems 
of the van der Waals type can then best be expressed by 
the use of the 'critical coordinates'  which can be derived 
from the conditions4: 

ql',../p2 = ~ 2,-,~ -2 c,/ /c/. = 0  (6) 

With 8D/'?£,. > 0 the identity: 

leads to: 

~f'/G;~ = (~f'/?D)(,3D/f~2) (7) 

,vf a ~ '  
= o  (8) ~D ~D 2 

With equation (1) we thus find: 

as well as: 

~[" DmT DDmT 
,~b -- D~ - D + {Din-- O): - 2 . D  t9) 

• = d  O"m  ) 
~2f'/'gD2 \(Din- D) 2 + (Din - D) 3 a (I0) 
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Stress-strain curve with absolute boundaries of 
stability given by C and D. A phase transition has to occur along 
the Maxwell line BE transforming the system from the homo- 
geneous orientation state 2' into that one as represented by )," by 
macroscopical necking 

The critical coordinates of the van der Waals 
conformational gas are thus obtained as: 

Tc = 8aDm/2 7 

Oc= O,,1/3 

f2 = aD2m/27 

(11) 

It is evident that the thermoelastic stability of real 
networks is uniquely determined by the van der Waals 
parameters, )~m and a. It is to be noted that these 
parameters modify the global properties of real networks 
only, letting the transformation of all intrinsic properties, 
such as for example the short-range order which is 'liquid- 
like', be regulated by the thermodynamical conditions of 
internal equilibrium 9. 

It may be of interest to remark here on the 
consequences that might become important for 
understanding irreversibly processed extensions of 
polymers with network structures, also embracing solid- 
state deformation. The treatments must of course be 
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extended by appropriate means ~°'~a. Because of the 
necessity to relate such considerations in principle to 
equilibrium states ~°'12, we immediately recognize the 
significance of a generalized van der Waals approach 
without discussing details as to how this approach has to 
be formulated. Hope is engendered to derive stability 
criteria for probably heuristical equilibrium states in 
deformed networks which must of course also govern all 
of the irreversible phenomena. Hence, 'necking', for 
example, often observed in solid-state extension 
experiments of polymers 13, might become 
understandable from analogous reasons as in the van der 
Waals approach presented. 

THE REDUCED EQUATION OF STATE 

The presence of relationships in the deformation 
behaviour of rubbers in the mode of isothermal isobaric 
simple elongation, which is recognized from the typical 
bending of the stress-strain curves 5, is best investigated by 
formulating a reduced equation of state. This can easily be 
done by referring to the critical coordinates of the van der 
Waals network. Hence, defining: 

f '  =f'/fc d = D/D~ t = T/T~ (12) 

we are immediately led to the reduced equation of state: 

.3.  

The quality of the quantitative representation of the 
experimental data on various rubbers is demonstrated in 
Figure 2. 

With the limits of stability defined by: 

?~f'/~d=O (14) 

we arrive at the analytical representation: 

f'(d)=d2(3 -2d)  (15) 

In this way we obtain the broken curve drawn in Figure 3, 
separating the homogeneous from the heterogeneous 
regions in the state diagram. It may be stressed here that 
the above representation is possible with knowledge of the 
two van der Waals parameters only, thus clearly bringing 
out the fact that the relative course of the stress strain 
curves of rubbers is determined solely by 'global' 
properties of the networks. The similarity in shape of the 
reduced experimental stress strain data ~'3'5'7's 
underlines topological symmetry in the deformation 
behaviour of rubbers irrespective of the actual number of 
chains present. This number, defined in the simplest case 
by N and in more complicated situations by an 
adequately formulated 'prefactor' in the equation of 
state14 ~7, comes into play of course if the discussion of 

• absolute forces is wanted. 
In view of the phenomena which are expected to arise 

close to the limits of stability 1°'12, it appears very 
satisfactory to observe that the parameters, a and 2~n 
obtained by an optimum fit to the experimental data 1'7's', 
are found to have always the same order of magnitude (see 
legend of Figure 2 as well as refs. 1, 7 and 8). 

By knowing the limits of stability (broken curve in 
Figure 2), it is indeed shown by the isotherms of actual 
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Figure 2 Experimental representation of the stress-strata curves 
in the reduced representation. Curve A: Dm= 10, a=0.2, t = 
1.685, with Dc=3.33, Tc=177.8 K and fc/Nk=O.74 (natural) 
rubber and polychloroprene). Curve B: Dm-8.5,  a -0 .24 ,  t -  
1.66, with Dc=2.83, Tc=181.3 K and fc/Nk=0.64 
(polybutadiene). Curve C: D m = 7.5, a = 0.36, t = 1.25, with D c 
=2.5, Tc-240 K and fc/Nk=O.75 (styrene-butadiene rubber). 
Curve D: D m = 13.5, a = 0.18, T = 1.39, with D c = 4.5, T c = 
216K and Fc/Nk- 1.2 (styrene-butadiene rubber). Full curves: 
calculated with equation (13); points: experimental values 
according to refs 1, 3, 5, 7, 8 and 9 

systems that rubbers in practical use are altogether 
constituted so as to be a marked distance from their limits 
of stability (see also later). 

D I S C U S S I O N  

We find from the above representation that the chains in 
rubbers are on average thermodynamical ly  equivalent; 
f o r f '  is the average force imposed on a 'single chain '  as a 
basically au tonomous  subsystem of deformation (see 
equation (11)). Taking these subsystems as fully 
au tonomous  we are led to the ideal network in respect to 
its global properties 1'3. Limitations of stability are shown 
to be related to global interactions and restrictions in the 
real network. Here, it is impor tant  to notice that the 
parameter,  a, in the form as used is basically expressing 
energetic interactions affecting the average potential 
energy of  the substituents while '~m modifies the changes of  
density of the average kinetic energy of  the chains which 
have finite lengths. Both of these parameters,  2 m and a, are 
necessary to limit the stability of  the system, thus 
predicting the occurrence of  a phase transition at 
temperatures below the critical temperature 2°. 

An interesting conclusion follows from the fact that 
every ideal isotropic elastic body  has an equat ion of  state 
which for large elongations shows the same dependence 
on the strain function D = 2 - 2  -z  as derived for ideal 

t= 27116 
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Figure 3 Various deformation curves in the reduced 
representation. The parameter t represents the ratio t = T/T c and 
describes the distance from the boundary of stability marked S. 
Technical unfilled rubbers are characterized by t -~ 27/16 

networks 18. The modulus  of these systems is naturally 
related to different origins. Nevertheless, the limits of 
stability should in principle be related to global 
interactions between appropria te  subsystems of 
deformat'ion. In the simplest approach  they are 
represented by an adequate van der Waals equation of 
state. There seems especially to be no doubt  about  the 
necessity of considering global entropy and energy 
changes upon deformation,  if the limiting factors of 
stability, in isotropic or quasi-isotropic elastic systems at 
sufficiently high strain, are to be identified in general. 
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